上一页

点击功能呼出

下一页

A-
默认
A+
护眼
默认
日间
夜间
上下滑动
左右翻页
上下翻页
《时间简史》 1/1
上一页 设置 下一页

第6章 空间和时间(1)[第2页/共4页]

1676年,丹麦的天文学家欧尔・克里斯琴森・罗默第一次发明了,光以有限但非常高的速率观光的究竟。他察看到,木星的卫星不是以等时候间隔从木星背后出来,不像如果卫星以稳定速率环绕木星活动时,人们会预感的那样。本地球和木星都环绕着太阳公转时,它们之间的间隔在窜改着。罗默重视到,我们离木星越远则木星的月蚀呈现得越晚。他论证道,因为当我们分开更远时,光从木星卫星那边要花更长的时候才气达到我们这里。但是,他测得的木星到地球的间隔窜改不是非常精确,与现在的每秒186000英里的值比拟较,那么他所测的光速的数值为每秒140000英里。固然如此,罗默不但证了然光以有限速率行进,并且测量了阿谁速率,他的成绩是出色的――要晓得,这统统都是在牛顿颁发《数学道理》之前11年做出的。

牛顿引力定律还奉告我们,物体之间的间隔越远,则引力越小。牛顿引力定律讲,一个恒星的引力只是一个近似恒星在间隔小一半时的引力的1/4。这个定律极其切确地预言了地球、玉轮和其他行星的轨道。如果这定律中恒星的万有引力随间隔减小或者增大得快一些,则行星轨道不再是椭圆的了,它们就会以螺旋线的形状要么回旋到太阳上去,要么从太阳逃逸。

如许,在伽利略之前,没有一小我想看看分歧重量的物体是否确切以分歧速率下落。传闻,伽利略从比萨斜塔大将重物落下,从而证了然亚里士多德的信心是错的。这故事几近不敷以信,但是伽利略的确做了一些等效的事――让分歧重量的球沿光滑的斜面上滚下。这环境近似于重物的垂直下落,只是因为速率小而更轻易察看罢了。伽利略的测量指出,不管物体的重量多少,其速率增加的速率是一样的。比方,你在一个沿程度方向每走10米即降落1米的斜面上开释1个球,则1秒钟后球的速率为每秒1米,2秒钟后为每秒2米,等等,而不管这个球多重。当然,一个铅锤比一片羽毛下落得更快些,那只是因为氛围阻力将羽毛的速率降落。如果一小我开释两个不受任何氛围阻力的物体,比方两个分歧的铅锤,它们则以一样速率降落。在没有氛围停滞东西下落的月球上,航天员大卫,斯各特停止了羽毛和铅锤尝试,并且发明二者确切同时落到月面上。

亚里士多德的传统观点还觉得,人们依托纯粹思惟便能够找出统统制约宇宙的定律:不需求用观察去查验之。

但是从牛顿定律能够推断,并不存在唯一的静止标准。人们能够讲,物体A静止而物体B以稳定的速率相对于物体A活动,或物体B静止而物体A活动,这两种讲法是等价的。比方,我们临时不睬睬地球的自转和它环绕太阳的公转,则能够讲地球是静止的,一辆有轨电车以每小时30英里的速率向东活动,或有轨电车是静止的,而地球以每小时30英里的速率向西活动。如果一小我在有轨电车上做活植物体的尝试,统统牛顿定律仍然都建立。比方,在有轨电车上打乒乓球,人们将会发明,正如在铁轨旁一张台桌上的球一样,乒乓球从命牛顿定律,以是没法得知究竟是火车还是地球在活动。

直到1865年,当英国的物理学家詹姆斯・麦克斯韦胜利地将直到当时用以描述电力和磁力的部分实际同一起来今后,才有了光传播的精确的实际。麦克斯韦方程预言,在归并的电磁场中能够存在颠簸的微扰,它们以牢固的速率,正如水池水面上的波纹那样行进。如果这些波的波长(两个相邻波峰之间的间隔)为1米或更长一些,它们就是我们所谓的射电波。更短波长的波称做微波(几厘米)或红外线(善于万分之一厘米)。可见光的波长在一百万分之四十至一百万分之八十厘米之间。更短的波长被称为紫外线、X射线和伽马射线。

上一页 设置 下一页
温馨提示:
是否自动播放到下一章节?
立即播放当前章节?
确定
确定
取消
pre
play
next
close
返回
X